Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.622
Filtrar
1.
EBioMedicine ; 102: 105077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513302

RESUMO

BACKGROUND: An intronic GAA repeat expansion in FGF14 was recently identified as a cause of GAA-FGF14 ataxia. We aimed to characterise the frequency and phenotypic profile of GAA-FGF14 ataxia in a large Chinese ataxia cohort. METHODS: A total of 1216 patients that included 399 typical late-onset cerebellar ataxia (LOCA), 290 early-onset cerebellar ataxia (EOCA), and 527 multiple system atrophy with predominant cerebellar ataxia (MSA-c) were enrolled. Long-range and repeat-primed PCR were performed to screen for GAA expansions in FGF14. Targeted long-read and whole-genome sequencing were performed to determine repeat size and sequence configuration. A multi-modal study including clinical assessment, MRI, and neurofilament light chain was conducted for disease assessment. FINDINGS: 17 GAA-FGF14 positive patients with a (GAA)≥250 expansion (12 patients with a GAA-pure expansion, five patients with a (GAA)≥250-[(GAA)n (GCA)m]z expansion) and two possible patients with biallelic (GAA)202/222 alleles were identified. The clinical phenotypes of the 19 positive and possible positive cases covered LOCA phenotype, EOCA phenotype and MSA-c phenotype. Five of six patients with EOCA phenotype were found to have another genetic disorder. The NfL levels of patients with EOCA and MSA-c phenotypes were significantly higher than patients with LOCA phenotype and age-matched controls (p < 0.001). NfL levels of pre-ataxic GAA-FGF14 positive individuals were lower than pre-ataxic SCA3 (p < 0.001) and similar to controls. INTERPRETATION: The frequency of GAA-FGF14 expansion in a large Chinese LOCA cohort was low (1.3%). Biallelic (GAA)202/222 alleles and co-occurrence with other acquired or hereditary diseases may contribute to phenotypic variation and different progression. FUNDING: This study was funded by the National Key R&D Program of China (2021YFA0805200 to H.J.), the National Natural Science Foundation of China (81974176 and 82171254 to H.J.; 82371272 to Z.C.; 82301628 to L.W.; 82301438 to Z.L.; 82201411 to L.H.), the Innovation Research Group Project of Natural Science Foundation of Hunan Province (2020JJ1008 to H.J.), the Key Research and Development Program of Hunan Province (2020SK2064 to H.J.), the Innovative Research and Development Program of Development and Reform Commission of Hunan Province to H.J., the Natural Science Foundation of Hunan Province (2024JJ3050 to H.J.; 2022JJ20094 and 2021JJ40974 to Z.C.; 2022JJ40783 to L.H.; 2022JJ40703 to Z.L.), the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital, 2020LNJJ12 to H.J.), the Central South University Research Programme of Advanced Interdisciplinary Study (2023QYJC010 to H.J.) and the Science and Technology Innovation Program of Hunan Province (2022RC1027 to Z.C.). D.P. holds a Fellowship award from the Canadian Institutes of Health Research (CIHR).


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Idoso , Humanos , Canadá , Ataxia Cerebelar/genética , Estudos de Coortes , Ataxia de Friedreich/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos
2.
CNS Neurosci Ther ; 30(3): e14638, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488445

RESUMO

AIMS: The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS: We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS: Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION: Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.


Assuntos
Ataxia Cerebelar , Estimulação Encefálica Profunda , Transtornos dos Movimentos , Humanos , Camundongos , Animais , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Estimulação Encefálica Profunda/métodos , Cerebelo , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia
3.
Parkinsonism Relat Disord ; 121: 106033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429185

RESUMO

Genetic testing has become a valuable diagnostic tool for movement disorders due to substantial advancements in understanding their genetic basis. However, the heterogeneity of movement disorders poses a significant challenge, with many genes implicated in different subtypes. This paper aims to provide a neurologist's perspective on approaching patients with hereditary hyperkinetic disorders with a focus on select forms of dystonia, paroxysmal dyskinesia, chorea, and ataxia. Age at onset, initial symptoms, and their severity, as well as the presence of any concurrent neurological and non-neurological features, contribute to the individual clinical profiles of hereditary non-parkinsonian movement disorders, aiding in the selection of appropriate genetic testing strategies. There are also more specific diagnostic clues that may facilitate the decision-making process and may be highly specific for certain conditions, such as diurnal fluctuations and l-dopa response in dopa-responsive dystonia, and triggering factors, duration and frequency of attacks in paroxysmal dyskinesia. While the genetic and mutational spectrum across non-parkinsonian movement disorders is broad, certain groups of diseases tend to be associated with specific types of pathogenic variants, such as repeat expansions in many of the ataxias. Some of these pathogenic variants cannot be detected by standard methods, such as panel or exome sequencing, but require the investigation of intronic regions for repeat expansions, such as Friedreich's or FGF14-linked ataxia. With our advancing knowledge of the genetic underpinnings of movement disorders, the incorporation of precise and personalized diagnostic strategies can enhance patient care, prognosis, and the application and development of targeted therapeutic interventions.


Assuntos
Ataxia Cerebelar , Coreia , Transtornos dos Movimentos , Humanos , Coreia/diagnóstico , Coreia/genética , Coreia/complicações , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/complicações , Movimento , Testes Genéticos , Ataxia Cerebelar/genética
4.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38436085

RESUMO

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Assuntos
Simulação por Computador , Mutação , Humanos , Mutação/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Deficiência Intelectual/genética , Ataxia Cerebelar/genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/enzimologia , Transporte Proteico , Células HEK293 , Estabilidade Proteica , Complexo de Golgi/metabolismo
5.
Cells ; 13(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38391932

RESUMO

Cerebellar ataxias are a wide heterogeneous group of movement disorders. Within this broad umbrella of diseases, there are both genetics and sporadic forms. The clinical presentation of these conditions can exhibit a diverse range of symptoms across different age groups, spanning from pure cerebellar manifestations to sensory ataxia and multisystemic diseases. Over the last few decades, advancements in our understanding of genetics and molecular pathophysiology related to both dominant and recessive ataxias have propelled the field forward, paving the way for innovative therapeutic strategies aimed at preventing and arresting the progression of these diseases. Nevertheless, the rarity of certain forms of ataxia continues to pose challenges, leading to limited insights into the etiology of the disease and the identification of target pathways. Additionally, the lack of suitable models hampers efforts to comprehensively understand the molecular foundations of disease's pathophysiology and test novel therapeutic interventions. In the following review, we describe the epidemiology, symptomatology, and pathological progression of hereditary ataxia, including both the prevalent and less common forms of these diseases. Furthermore, we illustrate the diverse molecular pathways and therapeutic approaches currently undergoing investigation in both pre-clinical studies and clinical trials. Finally, we address the existing and anticipated challenges within this field, encompassing both basic research and clinical endeavors.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia/patologia , Cerebelo/patologia
6.
Clin Nucl Med ; 49(3): 242-243, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38306376

RESUMO

ABSTRACT: A 56-year-old man was born to consanguineous parents. He experienced slow-progressing sensory disturbances in the upper extremities. T1-weighted images showed cerebellar atrophy. 123I-IMP SPECT revealed reduced cerebral blood flow in the cerebellum. 123I-FP-CIT SPECT showed low uptake of dopamine transporter in the bilateral tail of the striatum. 123I-MIBG scintigraphy shows a decreased heart-to-mediastinum ratio. Flanking polymerase chain reaction suggested biallelic repeat expansion in intron 2 of RFC1, and subsequent repeat-primed polymerase chain reaction revealed ACAGG repeat expansion. Thus, he was diagnosed as cerebellar ataxia with neuropathy and vestibular areflexia syndrome.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Masculino , Humanos , Pessoa de Meia-Idade , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Proteína de Replicação C/genética , Vestibulopatia Bilateral/diagnóstico , Cerebelo , Síndrome
7.
Trends Neurosci ; 47(3): 227-238, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360512

RESUMO

International consortia collaborating on the genetics of rare diseases have significantly boosted our understanding of inherited neurological disorders. Historical clinical classification boundaries were drawn between disorders with seemingly different etiologies, such as inherited peripheral neuropathies (IPNs), spastic paraplegias, and cerebellar ataxias. These clinically defined borders are being challenged by the identification of mutations in genes displaying wide phenotypic spectra and by shared pathomechanistic themes, which are valuable indications for therapy development. We highlight common cellular alterations that underlie this genetic landscape, including alteration of cytoskeleton, axonal transport, mitochondrial function, and DNA repair response. Finally, we discuss venues for future research using the long axonopathies of the PNS as a model to explore other neurogenetic disorders.


Assuntos
Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Paraplegia Espástica Hereditária , Humanos , Ataxia Cerebelar/genética , Paraplegia Espástica Hereditária/genética , Doenças do Sistema Nervoso Periférico/genética , Mutação/genética , Paraplegia
9.
Artigo em Chinês | MEDLINE | ID: mdl-38297853

RESUMO

CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.


Assuntos
Ataxia Cerebelar , Deformidades Congênitas do Pé , Perda Auditiva Neurossensorial , Atrofia Óptica , Reflexo Anormal , Pé Cavo , Humanos , Criança , Feminino , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/diagnóstico , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
10.
Clin Genet ; 105(4): 446-452, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38221848

RESUMO

A pathogenic GAA repeat expansion in the first intron of the fibroblast growth factor 14 gene (FGF14) has been recently identified as the cause of spinocerebellar ataxia 27B (SCA27B). We herein screened 160 Greek index cases with late-onset cerebellar ataxia (LOCA) for FGF14 repeat expansions using a combination of long-range PCR and bidirectional repeat-primed PCRs. We identified 19 index cases (12%) carrying a pathogenic FGF14 GAA expansion, a diagnostic yield higher than that of previously screened repeat-expansion ataxias in Greek LOCA patients. The age at onset of SCA27B patients was 60.5 ± 12.3 years (range, 34-80). Episodic onset (37%), downbeat nystagmus (32%) and vertigo (26%) were significantly more frequent in FGF14 expansion-positive cases compared to expansion-negative cases. Beyond typical cerebellar signs, SCA27B patients often displayed hyperreflexia (47%) and reduced vibration sense in the lower extremities (42%). The frequency and phenotypic profile of SCA27B in Greek patients was similar to most other previously studied populations. We conclude that FGF14 GAA repeat expansions are the commonest known genetic cause of LOCA in the Greek population and recommend prioritizing testing for FGF14 expansions in the diagnostic algorithm of patients with LOCA.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Grécia/epidemiologia , Ataxias Espinocerebelares/genética , Degenerações Espinocerebelares/genética , Fenótipo , Expansão das Repetições de Trinucleotídeos/genética
11.
Mov Disord ; 39(3): 486-497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38197134

RESUMO

BACKGROUND: Spinocerebellar ataxia type 4 (SCA4) is an autosomal dominant ataxia with invariable sensory neuropathy originally described in a family with Swedish ancestry residing in Utah more than 25 years ago. Despite tight linkage to the 16q22 region, the molecular diagnosis has since remained elusive. OBJECTIVES: Inspired by pathogenic structural variation implicated in other 16q-ataxias with linkage to the same locus, we revisited the index SCA4 cases from the Utah family using novel technologies to investigate structural variation within the candidate region. METHODS: We adopted a targeted long-read sequencing approach with adaptive sampling on the Oxford Nanopore Technologies (ONT) platform that enables the detection of segregating structural variants within a genomic region without a priori assumptions about any variant features. RESULTS: Using this approach, we found a heterozygous (GGC)n repeat expansion in the last coding exon of the zinc finger homeobox 3 (ZFHX3) gene that segregates with disease, ranging between 48 and 57 GGC repeats in affected probands. This finding was replicated in a separate family with SCA4. Furthermore, the estimation of this GGC repeat size in short-read whole genome sequencing (WGS) data of 21,836 individuals recruited to the 100,000 Genomes Project in the UK and our in-house dataset of 11,258 exomes did not reveal any pathogenic repeats, indicating that the variant is ultrarare. CONCLUSIONS: These findings support the utility of adaptive long-read sequencing as a powerful tool to decipher causative structural variation in unsolved cases of inherited neurological disease. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Linhagem , Ataxias Espinocerebelares/genética , Ataxia Cerebelar/genética , Éxons , Proteínas de Homeodomínio/genética
12.
Cerebellum ; 23(1): 205-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36757662

RESUMO

We describe a novel superoxide dismutase (SOD1) mutation-associated clinical phenotype of cerebellar ataxia and motor neuron disease with a variant in the ceruloplasmin (Cp) gene, which may have possibly contributed to a multi-factorial phenotype, supported by genetic and protein structure analyses.


Assuntos
Esclerose Amiotrófica Lateral , Ataxia Cerebelar , Doença dos Neurônios Motores , Humanos , Esclerose Amiotrófica Lateral/genética , Ataxia Cerebelar/genética , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Doença dos Neurônios Motores/genética , Mutação/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
J Neurol Neurosurg Psychiatry ; 95(2): 175-179, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399286

RESUMO

BACKGROUND: Intronic GAA repeat expansions in the fibroblast growth factor 14 gene (FGF14) have recently been identified as a common cause of ataxia with potential phenotypic overlap with RFC1-related cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS). Our objective was to report on the frequency of intronic FGF14 GAA repeat expansions in patients with an unexplained CANVAS-like phenotype. METHODS: We recruited 45 patients negative for biallelic RFC1 repeat expansions with a combination of cerebellar ataxia plus peripheral neuropathy and/or bilateral vestibulopathy (BVP), and genotyped the FGF14 repeat locus. Phenotypic features of GAA-FGF14-positive versus GAA-FGF14-negative patients were compared. RESULTS: Frequency of FGF14 GAA repeat expansions was 38% (17/45) in the entire cohort, 38% (5/13) in the subgroup with cerebellar ataxia plus polyneuropathy, 43% (9/21) in the subgroup with cerebellar ataxia plus BVP and 27% (3/11) in patients with all three features. BVP was observed in 75% (12/16) of GAA-FGF14-positive patients. Polyneuropathy was at most mild and of mixed sensorimotor type in six of eight GAA-FGF14-positive patients. Family history of ataxia (59% vs 15%; p=0.007) was significantly more frequent and permanent cerebellar dysarthria (12% vs 54%; p=0.009) significantly less frequent in GAA-FGF14-positive than in GAA-FGF14-negative patients. Age at onset was inversely correlated to the size of the repeat expansion (Pearson's r, -0.67; R2=0.45; p=0.0031). CONCLUSIONS: GAA-FGF14-related disease is a common cause of cerebellar ataxia with polyneuropathy and/or BVP, and should be included in the differential diagnosis of RFC1 CANVAS and disease spectrum.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Polineuropatias , Doenças Vestibulares , Humanos , Ataxia/genética , Vestibulopatia Bilateral/genética , Vestibulopatia Bilateral/diagnóstico , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Síndrome
14.
Ann Clin Transl Neurol ; 11(1): 96-104, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916889

RESUMO

BACKGROUND AND OBJECTIVES: The GAA repeat expansion within the fibroblast growth factor 14 (FGF14) gene has been found to be associated with late-onset cerebellar ataxia. This study aimed to investigate the genetic causes of cerebellar ataxia in patients in Japan. METHODS: We collected a case series of 940 index patients who presented with chronic cerebellar ataxia and remained genetically undiagnosed after our preliminary genetic screening. To investigate the FGF14 repeat locus, we employed an integrated diagnostic strategy that involved fluorescence amplicon length analysis polymerase chain reaction (PCR), repeat-primed PCR, and long-read sequencing. RESULTS: Pathogenic FGF14 GAA repeat expansions were detected in 12 patients from 11 unrelated families. The median size of the pathogenic GAA repeat was 309 repeats (range: 270-316 repeats). In these patients, the mean age of onset was 66.9 ± 9.6 years, with episodic symptoms observed in 56% of patients and parkinsonism in 30% of patients. We also detected FGF14 repeat expansions in a patient with a phenotype of multiple system atrophy, including cerebellar ataxia, parkinsonism, autonomic ataxia, and bilateral vocal cord paralysis. Brain magnetic resonance imaging (MRI) showed normal to mild cerebellar atrophy, and a follow-up study conducted after a mean period of 6 years did not reveal any significant progression. DISCUSSION: This study highlights the importance of FGF14 GAA repeat analysis in patients with late-onset cerebellar ataxia, particularly when they exhibit episodic symptoms, or their brain MRI shows no apparent cerebellar atrophy. Our findings contribute to a better understanding of the clinical variability of GAA-FGF14-related diseases.


Assuntos
Ataxia Cerebelar , Fatores de Crescimento de Fibroblastos , Ataxia de Friedreich , Transtornos Parkinsonianos , Degenerações Espinocerebelares , Humanos , Pessoa de Meia-Idade , Idoso , Ataxia Cerebelar/genética , Ataxia de Friedreich/genética , Seguimentos , Japão , Degenerações Espinocerebelares/genética , Atrofia
16.
Clin Genet ; 105(2): 228-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37903629

RESUMO

A novel homozygous variant in KIFBP was identified in a consanguineous family with four sibs affected by Goldberg-Sphrintzen Syndrome (GOSHS). We report for the first time, early-adulthood-onset progressive ataxia, opthalmoparesis, and hypogonadotropic hypogonadism in GOSHS.


Assuntos
Ataxia Cerebelar , Hipogonadismo , Oftalmoplegia , Degenerações Espinocerebelares , Humanos , Adulto , Ataxia Cerebelar/genética , Hipogonadismo/genética , Linhagem
17.
Ann Neurol ; 95(3): 607-613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38062616

RESUMO

Cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) is a late-onset, autosomal recessive neurodegenerative disorder caused by biallelic AAGGG/ACAGG repeat expansion (AAGGG-exp/ACAGG-exp) in RFC1. The recent identification of patients with CANVAS exhibiting compound heterozygosity for AAGGG-exp and truncating variants supports the loss-of-function of RFC1 in CANVAS patients. We investigated the pathological changes in 2 autopsied patients with CANVAS harboring biallelic ACAGG-exp and AAGGG-exp. RNA fluorescence in situ hybridization of the 2 patients revealed CCTGT- and CCCTT-containing RNA foci, respectively, in neuronal nuclei of tissues with neuronal loss. Our findings suggest that RNA toxicity may be involved in the pathogenesis of CANVAS. ANN NEUROL 2024;95:607-613.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Humanos , Ataxia Cerebelar/genética , Hibridização in Situ Fluorescente , RNA , Síndrome
18.
Mov Disord ; 39(1): 141-151, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964426

RESUMO

BACKGROUND: The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES: We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS: Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS: We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS: This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Aniridia , Anidrases Carbônicas , Ataxia Cerebelar , Deficiência Intelectual , Transtornos dos Movimentos , Degenerações Espinocerebelares , Humanos , Ataxia Cerebelar/genética , Mutação de Sentido Incorreto/genética , Transtornos dos Movimentos/complicações , Atrofia , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética
19.
Am J Hum Genet ; 111(1): 82-95, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38035881

RESUMO

Autosomal-dominant ataxia with sensory and autonomic neuropathy is a highly specific combined phenotype that we described in two Swedish kindreds in 2014; its genetic cause had remained unknown. Here, we report the discovery of exonic GGC trinucleotide repeat expansions, encoding poly-glycine, in zinc finger homeobox 3 (ZFHX3) in these families. The expansions were identified in whole-genome datasets within genomic segments that all affected family members shared. Non-expanded alleles carried one or more interruptions within the repeat. We also found ZFHX3 repeat expansions in three additional families, all from the region of Skåne in southern Sweden. Individuals with expanded repeats developed balance and gait disturbances at 15 to 60 years of age and had sensory neuropathy and slow saccades. Anticipation was observed in all families and correlated with different repeat lengths determined through long-read sequencing in two family members. The most severely affected individuals had marked autonomic dysfunction, with severe orthostatism as the most disabling clinical feature. Neuropathology revealed p62-positive intracytoplasmic and intranuclear inclusions in neurons of the central and enteric nervous system, as well as alpha-synuclein positivity. ZFHX3 is located within the 16q22 locus, to which spinocerebellar ataxia type 4 (SCA4) repeatedly had been mapped; the clinical phenotype in our families corresponded well with the unique phenotype described in SCA4, and the original SCA4 kindred originated from Sweden. ZFHX3 has known functions in neuronal development and differentiation n both the central and peripheral nervous system. Our findings demonstrate that SCA4 is caused by repeat expansions in ZFHX3.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Expansão das Repetições de Trinucleotídeos/genética , Ataxias Espinocerebelares/genética , Ataxia/genética , Ataxia Cerebelar/genética , Fenótipo , Degenerações Espinocerebelares/genética , Proteínas de Homeodomínio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...